Research Projects

 

Injectable Hydrogel Adhesives for Tissue Repair

   Injectable hydrogel adhesives, especially those that can strongly adhere to tissues and feature near-native tissue mechanical properties, are desirable biomaterials for tissue repair. Compared to nonadhesive injectable hydrogels for minimally invasive delivery of therapeutic agents, they can better retain the delivered agents at targeted tissue locations and provide additional local physical barriers.

Microfluidics for Cardiavascular Tissue Engineering

   According to the latest statistics report published in 2018, cardiovascular disease (CVD) caused around 45% of all deaths (3.8 million) across ESC (European Society of Cardiology) member countries in 2015, where more than 85 million people were living with CVD. We are currently developing microfluidic systems for cardiavascular tissue engineering.

 

Research Interest

 

Supramolecular polymer self-assembly

   Protein-polymer conjugates can be assembled by dual molecular recognitions. The third supramolecular interaction between alfa-CD and PEG triggers the formation of pseudo-polyrotaxanes (PPR) microcrystal structures that can cross-link the whole supramolecular polymeric system into hydrogel biomaterials. Such a bottom-up suramolecular self-assembly approach could avoid excessive chemical modification of natural and sythetic polymers,  thereby providing a new strategy for developing novel biomaterials. This early study has also led to my postgraduate research projects, where supramolecular hydrogels are used for stem cell-based tissue engineering and regenerative medicine.

Supromolecular Hydrogel for Stem Cell Therapy and Tissue Regeneration

   Biopolymer-based supramolecular hydrogels cross-linked by host–guest interactions are usually mechanically weak. In this project, we have develped a novel host–guest macromer (HGM) approach for mechanically robust supramolecular biopolymeric hydrogels, which have been tested in different tissue regeneration models.

 

Bioinspired Chemistry&Materials

   Inspired by marine mussels, where different mussel foot proteins (Mfps) function cooperatively to achieve excellent wet adhesion, we herein report a dual-mode-mimicking strategy by modifying gelatin (Gel) biopolymers with a single-type thiourea–catechol (TU-Cat) functionality to mimic two types of Mfps and their mode of action. This strategy features a minor, yet impactful modification of biopolymers, which gives access to collective properties of an ideal injectable hydrogel adhesive. 

© 2020 SuPoBio. Proudly created with Wix.com

  • Twitter Clean Grey
  • LinkedIn Clean Grey